Dibutyltin Dimethoxide and Ag(I)-BINAPCatalyzed Aldol Reactions of Ketones

Key words

aldol reaction

ketones

silver(I)-BINAP

tin

Selected examples:

86% yield, $\mathrm{dr}=83: 17,90 \%$ ee
(R)-BINAP (10 mol\%) AgOTf ($20 \mathrm{~mol} \%$)
$\mathrm{Bu}_{2} \mathrm{Sn}(\mathrm{OMe})_{2}(8 \mathrm{~mol} \%)$
MeOH (5 equiv)
THF, 3 A MS, $-20^{\circ} \mathrm{C}$

58% yield, $d r=97: 3,89 \%$ ee

38% yield, $\mathrm{dr}>99: 1,93 \%$ ee

Asymmetric aldol reaction of diketene with methyl benzoylformate:

Proposed catalytic cycle:

Significance: The authors have reported a new asymmetric aldol reaction of alkenyl trichloroacetates with α-keto esters by using dibutyltin dimethoxide and $\mathrm{Ag}(\mathrm{I})$-BINAP complex in the presence of methanol. The aldol products were obtained in good to excellent yields and up to 93% ee. This methodology was further extended to the reaction of diketene with methyl benzoylformate.

Comment: Previously, the authors reported that dibutyltin dimethoxide acts as a catalyst in the aldol reaction of alkenyl trichloroacetates with aldehydes (Tetrahedron Lett. 2003, 44, 7163). In this paper, they have extended this method to α-keto esters. It is interesting that the addition of a catalytic amount of silver(I) bidentate phosphine complex remarkably accelerated the aldol reaction.

[^0]
[^0]: synfacts Contributors: Hisashi Yamamoto, Cheol Hong Cheon
 Synfacts 2009, 11, 1227-1227 Published online: 22.10.2009
 DOI: 10.1055/s-0029-1218076; Reg-No.: H12809SF

