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Aldol Process Catalyzed by Chiral Tin 
Methoxides

Significance: The importance of the catalytic 
asymmetric aldol reaction can hardly be overesti-
mated. Among numerous existing methods there 
are, however, few examples of enantioselective al-
dol reaction proceeding via a chiral metal enolate. 
The authors previously found that Bu2Sn(OMe)2 
catalyzes the reaction between alkenyl trichloro-
acetates and aldehydes in the presence of metha-
nol. In this paper they expand this methodology to 
a chiral version using chiral tin methoxide formed 
in situ from dibromide 2. The use of 10 mol% of 
catalyst furnished a number of acyclic products 
with yields of 41–80% and high enantioselectivi-
ties (88–99%). The diastereoselectivity ranged 
from 85:15 to >99:1. A number of cyclic sub-
strates were also employed with moderate suc-
cess.

Comment: The authors first attempted to test 
BINOL derivative 1 in an aldol reaction. The isola-
tion of the corresponding dimethoxide failed due 
to its low stability. The in situ formed mono-meth-
oxy derivative demonstrated some catalytic activi-
ty; however, both yield and enantioselectivity were 
low. As 3,3¢-substituents were shown to be impor-
tant for a high enantiocontrol in the aldol reaction, 
compound 2 was synthesized which showed su-
perior results. Generally, despite the high stereo-
control levels, the toxic nature of organotin com-
pounds decreases the competitiveness of the 
developed method.
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80% yield, 93% ee (syn)
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75% yield, syn/anti = 67:33
7% ee (syn), 11% ee (anti)
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