Gategory

Metal-Catalyzed Asymmetric Synthesis and Stereoselective Reactions

Key words

aldol reaction

enolates

tin

80\% yield, 93% ee (syn) syn/anti = 95:5

75% yield, syn/anti $=67: 33$ 7\% ee (syn), 11\% ee (anti)

A. YANAGISAWA,* T. SATOU, A. IZUMISEKI, Y. TANAKA, M. MIYAGI, T. ARAI, K. YOSHIDA (CHIBA UNIVERSITY, JAPAN)

Methanol-Assisted Catalysis by Chiral Tin Methoxides: An Alternative Asymmetric Aldol Process Chem. Eur. J. 2009, 15, 11450-11453.

Aldol Process Catalyzed by Chiral Tin Methoxides

Selected examples:

99% yield, syn/anti $=47: 53$ 90\% ee (syn), 51% ee (anti)

$1 \mathrm{Y}=\mathrm{H}$
$2 \mathrm{Y}=4-t-\mathrm{BuC}_{6} \mathrm{H}_{4}$

Plausible catalytic cycle:

Significance: The importance of the catalytic asymmetric aldol reaction can hardly be overestimated. Among numerous existing methods there are, however, few examples of enantioselective aldol reaction proceeding via a chiral metal enolate. The authors previously found that $\mathrm{Bu}_{2} \mathrm{Sn}(\mathrm{OMe})_{2}$ catalyzes the reaction between alkenyl trichloroacetates and aldehydes in the presence of methanol. In this paper they expand this methodology to a chiral version using chiral tin methoxide formed in situ from dibromide 2. The use of $10 \mathrm{~mol} \%$ of catalyst furnished a number of acyclic products with yields of 41-80\% and high enantioselectivities (88-99\%). The diastereoselectivity ranged from $85: 15$ to $>99: 1$. A number of cyclic substrates were also employed with moderate success.
synfacts Contributors: Hisashi Yamamoto, Dmitry L. Usanov Synfacts 2010, 2, 0188-0188 Published online: 21.01.2010 DOI: 10.1055/s-0029-1219104; Reg-No.: H18609SF

Comment: The authors first attempted to test BINOL derivative $\mathbf{1}$ in an aldol reaction. The isolation of the corresponding dimethoxide failed due to its low stability. The in situ formed mono-methoxy derivative demonstrated some catalytic activity; however, both yield and enantioselectivity were low. As 3,3'-substituents were shown to be important for a high enantiocontrol in the aldol reaction, compound 2 was synthesized which showed superior results. Generally, despite the high stereocontrol levels, the toxic nature of organotin compounds decreases the competitiveness of the developed method.

